'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(zeros()) -> mark(cons(0(), zeros()))
     , active(tail(cons(X, XS))) -> mark(XS)
     , active(cons(X1, X2)) -> cons(active(X1), X2)
     , active(tail(X)) -> tail(active(X))
     , cons(mark(X1), X2) -> mark(cons(X1, X2))
     , tail(mark(X)) -> mark(tail(X))
     , proper(zeros()) -> ok(zeros())
     , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
     , proper(0()) -> ok(0())
     , proper(tail(X)) -> tail(proper(X))
     , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
     , tail(ok(X)) -> ok(tail(X))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(zeros()) -> c_0(cons^#(0(), zeros()))
    , active^#(tail(cons(X, XS))) -> c_1()
    , active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
    , active^#(tail(X)) -> c_3(tail^#(active(X)))
    , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))
    , tail^#(mark(X)) -> c_5(tail^#(X))
    , proper^#(zeros()) -> c_6()
    , proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))
    , proper^#(0()) -> c_8()
    , proper^#(tail(X)) -> c_9(tail^#(proper(X)))
    , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))
    , tail^#(ok(X)) -> c_11(tail^#(X))
    , top^#(mark(X)) -> c_12(top^#(proper(X)))
    , top^#(ok(X)) -> c_13(top^#(active(X)))}
  
  The usable rules are:
   {  active(zeros()) -> mark(cons(0(), zeros()))
    , active(tail(cons(X, XS))) -> mark(XS)
    , active(cons(X1, X2)) -> cons(active(X1), X2)
    , active(tail(X)) -> tail(active(X))
    , proper(zeros()) -> ok(zeros())
    , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
    , proper(0()) -> ok(0())
    , proper(tail(X)) -> tail(proper(X))
    , cons(mark(X1), X2) -> mark(cons(X1, X2))
    , tail(mark(X)) -> mark(tail(X))
    , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
    , tail(ok(X)) -> ok(tail(X))}
  
  The estimated dependency graph contains the following edges:
   {active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))}
     ==> {cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
   {active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))}
     ==> {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
   {active^#(tail(X)) -> c_3(tail^#(active(X)))}
     ==> {tail^#(ok(X)) -> c_11(tail^#(X))}
   {active^#(tail(X)) -> c_3(tail^#(active(X)))}
     ==> {tail^#(mark(X)) -> c_5(tail^#(X))}
   {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
     ==> {cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
   {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
     ==> {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
   {tail^#(mark(X)) -> c_5(tail^#(X))}
     ==> {tail^#(ok(X)) -> c_11(tail^#(X))}
   {tail^#(mark(X)) -> c_5(tail^#(X))}
     ==> {tail^#(mark(X)) -> c_5(tail^#(X))}
   {proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))}
     ==> {cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
   {proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))}
     ==> {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
   {proper^#(tail(X)) -> c_9(tail^#(proper(X)))}
     ==> {tail^#(ok(X)) -> c_11(tail^#(X))}
   {proper^#(tail(X)) -> c_9(tail^#(proper(X)))}
     ==> {tail^#(mark(X)) -> c_5(tail^#(X))}
   {cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
     ==> {cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
   {cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
     ==> {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
   {tail^#(ok(X)) -> c_11(tail^#(X))}
     ==> {tail^#(ok(X)) -> c_11(tail^#(X))}
   {tail^#(ok(X)) -> c_11(tail^#(X))}
     ==> {tail^#(mark(X)) -> c_5(tail^#(X))}
   {top^#(mark(X)) -> c_12(top^#(proper(X)))}
     ==> {top^#(ok(X)) -> c_13(top^#(active(X)))}
   {top^#(mark(X)) -> c_12(top^#(proper(X)))}
     ==> {top^#(mark(X)) -> c_12(top^#(proper(X)))}
   {top^#(ok(X)) -> c_13(top^#(active(X)))}
     ==> {top^#(ok(X)) -> c_13(top^#(active(X)))}
   {top^#(ok(X)) -> c_13(top^#(active(X)))}
     ==> {top^#(mark(X)) -> c_12(top^#(proper(X)))}
  
  We consider the following path(s):
   1) {  top^#(mark(X)) -> c_12(top^#(proper(X)))
       , top^#(ok(X)) -> c_13(top^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(zeros()) -> mark(cons(0(), zeros()))
       , active(tail(cons(X, XS))) -> mark(XS)
       , active(cons(X1, X2)) -> cons(active(X1), X2)
       , active(tail(X)) -> tail(active(X))
       , proper(zeros()) -> ok(zeros())
       , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(tail(X)) -> tail(proper(X))
       , cons(mark(X1), X2) -> mark(cons(X1, X2))
       , tail(mark(X)) -> mark(tail(X))
       , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
       , tail(ok(X)) -> ok(tail(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(zeros()) -> mark(cons(0(), zeros()))
               , active(tail(cons(X, XS))) -> mark(XS)
               , active(cons(X1, X2)) -> cons(active(X1), X2)
               , active(tail(X)) -> tail(active(X))
               , proper(zeros()) -> ok(zeros())
               , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(tail(X)) -> tail(proper(X))
               , cons(mark(X1), X2) -> mark(cons(X1, X2))
               , tail(mark(X)) -> mark(tail(X))
               , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail(ok(X)) -> ok(tail(X))
               , top^#(mark(X)) -> c_12(top^#(proper(X)))
               , top^#(ok(X)) -> c_13(top^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , top^#(mark(X)) -> c_12(top^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , top^#(mark(X)) -> c_12(top^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [9]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [15]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {top^#(ok(X)) -> c_13(top^#(active(X)))}
            and weakly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , top^#(mark(X)) -> c_12(top^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(ok(X)) -> c_13(top^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [12]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(tail(cons(X, XS))) -> mark(XS)}
            and weakly orienting the rules
            {  top^#(ok(X)) -> c_13(top^#(active(X)))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , top^#(mark(X)) -> c_12(top^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(tail(cons(X, XS))) -> mark(XS)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [8]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [10]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [11]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(zeros()) -> ok(zeros())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  active(tail(cons(X, XS))) -> mark(XS)
             , top^#(ok(X)) -> c_13(top^#(active(X)))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , top^#(mark(X)) -> c_12(top^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(zeros()) -> ok(zeros())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [6]
                  tail(x1) = [1] x1 + [4]
                  proper(x1) = [1] x1 + [2]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(zeros()) -> mark(cons(0(), zeros()))
                 , active(cons(X1, X2)) -> cons(active(X1), X2)
                 , active(tail(X)) -> tail(active(X))
                 , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
                 , proper(tail(X)) -> tail(proper(X))
                 , cons(mark(X1), X2) -> mark(cons(X1, X2))
                 , tail(mark(X)) -> mark(tail(X))
                 , tail(ok(X)) -> ok(tail(X))}
              Weak Rules:
                {  proper(zeros()) -> ok(zeros())
                 , proper(0()) -> ok(0())
                 , active(tail(cons(X, XS))) -> mark(XS)
                 , top^#(ok(X)) -> c_13(top^#(active(X)))
                 , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                 , top^#(mark(X)) -> c_12(top^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(zeros()) -> mark(cons(0(), zeros()))
                   , active(cons(X1, X2)) -> cons(active(X1), X2)
                   , active(tail(X)) -> tail(active(X))
                   , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
                   , proper(tail(X)) -> tail(proper(X))
                   , cons(mark(X1), X2) -> mark(cons(X1, X2))
                   , tail(mark(X)) -> mark(tail(X))
                   , tail(ok(X)) -> ok(tail(X))}
                Weak Rules:
                  {  proper(zeros()) -> ok(zeros())
                   , proper(0()) -> ok(0())
                   , active(tail(cons(X, XS))) -> mark(XS)
                   , top^#(ok(X)) -> c_13(top^#(active(X)))
                   , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                   , top^#(mark(X)) -> c_12(top^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 4.
                The enriched problem is compatible with the following automaton:
                {  active_0(2) -> 28
                 , active_0(3) -> 28
                 , active_0(5) -> 28
                 , active_0(8) -> 28
                 , active_1(2) -> 35
                 , active_1(3) -> 35
                 , active_1(5) -> 35
                 , active_1(8) -> 35
                 , active_2(32) -> 45
                 , active_2(33) -> 45
                 , active_2(46) -> 50
                 , active_3(43) -> 53
                 , active_3(46) -> 59
                 , active_3(60) -> 64
                 , active_4(57) -> 65
                 , active_4(60) -> 67
                 , zeros_0() -> 2
                 , zeros_1() -> 33
                 , zeros_2() -> 42
                 , zeros_3() -> 56
                 , mark_0(2) -> 3
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(8) -> 3
                 , mark_1(31) -> 28
                 , mark_1(31) -> 35
                 , mark_2(46) -> 45
                 , cons_1(32, 33) -> 31
                 , cons_2(40, 41) -> 39
                 , cons_2(40, 41) -> 48
                 , cons_2(43, 42) -> 46
                 , cons_3(53, 42) -> 50
                 , cons_3(53, 42) -> 59
                 , cons_3(54, 55) -> 52
                 , cons_3(54, 55) -> 62
                 , cons_3(57, 56) -> 60
                 , cons_4(65, 56) -> 64
                 , cons_4(65, 56) -> 67
                 , 0_0() -> 5
                 , 0_1() -> 32
                 , 0_2() -> 43
                 , 0_3() -> 57
                 , proper_0(2) -> 30
                 , proper_0(3) -> 30
                 , proper_0(5) -> 30
                 , proper_0(8) -> 30
                 , proper_1(2) -> 37
                 , proper_1(3) -> 37
                 , proper_1(5) -> 37
                 , proper_1(8) -> 37
                 , proper_1(31) -> 39
                 , proper_2(31) -> 48
                 , proper_2(32) -> 40
                 , proper_2(33) -> 41
                 , proper_2(46) -> 52
                 , proper_3(42) -> 55
                 , proper_3(43) -> 54
                 , proper_3(46) -> 62
                 , ok_0(2) -> 8
                 , ok_0(2) -> 30
                 , ok_0(3) -> 8
                 , ok_0(5) -> 8
                 , ok_0(5) -> 30
                 , ok_0(8) -> 8
                 , ok_1(32) -> 37
                 , ok_1(33) -> 37
                 , ok_2(42) -> 41
                 , ok_2(43) -> 40
                 , ok_2(46) -> 39
                 , ok_2(46) -> 48
                 , ok_3(56) -> 55
                 , ok_3(57) -> 54
                 , ok_3(60) -> 52
                 , ok_3(60) -> 62
                 , top^#_0(2) -> 26
                 , top^#_0(3) -> 26
                 , top^#_0(5) -> 26
                 , top^#_0(8) -> 26
                 , top^#_0(28) -> 27
                 , top^#_0(30) -> 29
                 , top^#_1(35) -> 34
                 , top^#_1(37) -> 36
                 , top^#_1(39) -> 38
                 , top^#_2(45) -> 44
                 , top^#_2(48) -> 47
                 , top^#_2(50) -> 49
                 , top^#_2(52) -> 51
                 , top^#_3(59) -> 58
                 , top^#_3(62) -> 61
                 , top^#_3(64) -> 63
                 , top^#_4(67) -> 66
                 , c_12_0(29) -> 26
                 , c_12_1(36) -> 26
                 , c_12_1(38) -> 27
                 , c_12_2(47) -> 34
                 , c_12_2(51) -> 44
                 , c_12_3(61) -> 44
                 , c_13_0(27) -> 26
                 , c_13_1(34) -> 26
                 , c_13_1(34) -> 29
                 , c_13_2(44) -> 36
                 , c_13_2(49) -> 38
                 , c_13_3(58) -> 47
                 , c_13_3(63) -> 51
                 , c_13_4(66) -> 61}
      
   2) {  active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
       , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))
       , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  active(zeros()) -> mark(cons(0(), zeros()))
       , active(tail(cons(X, XS))) -> mark(XS)
       , active(cons(X1, X2)) -> cons(active(X1), X2)
       , active(tail(X)) -> tail(active(X))
       , cons(mark(X1), X2) -> mark(cons(X1, X2))
       , tail(mark(X)) -> mark(tail(X))
       , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
       , tail(ok(X)) -> ok(tail(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(zeros()) -> mark(cons(0(), zeros()))
               , active(tail(cons(X, XS))) -> mark(XS)
               , active(cons(X1, X2)) -> cons(active(X1), X2)
               , active(tail(X)) -> tail(active(X))
               , cons(mark(X1), X2) -> mark(cons(X1, X2))
               , tail(mark(X)) -> mark(tail(X))
               , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail(ok(X)) -> ok(tail(X))
               , active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
               , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))
               , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [7]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))}
            and weakly orienting the rules
            {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [3]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [2]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
            and weakly orienting the rules
            {  active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
             , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [7]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [6]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(tail(cons(X, XS))) -> mark(XS)}
            and weakly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))
             , active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
             , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(tail(cons(X, XS))) -> mark(XS)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [8]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(zeros()) -> mark(cons(0(), zeros()))}
            and weakly orienting the rules
            {  active(tail(cons(X, XS))) -> mark(XS)
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))
             , active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
             , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(zeros()) -> mark(cons(0(), zeros()))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [4]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [2]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(cons(X1, X2)) -> cons(active(X1), X2)
                 , active(tail(X)) -> tail(active(X))
                 , cons(mark(X1), X2) -> mark(cons(X1, X2))
                 , tail(mark(X)) -> mark(tail(X))
                 , tail(ok(X)) -> ok(tail(X))}
              Weak Rules:
                {  active(zeros()) -> mark(cons(0(), zeros()))
                 , active(tail(cons(X, XS))) -> mark(XS)
                 , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                 , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))
                 , active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
                 , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(cons(X1, X2)) -> cons(active(X1), X2)
                   , active(tail(X)) -> tail(active(X))
                   , cons(mark(X1), X2) -> mark(cons(X1, X2))
                   , tail(mark(X)) -> mark(tail(X))
                   , tail(ok(X)) -> ok(tail(X))}
                Weak Rules:
                  {  active(zeros()) -> mark(cons(0(), zeros()))
                   , active(tail(cons(X, XS))) -> mark(XS)
                   , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                   , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))
                   , active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
                   , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  zeros_0() -> 2
                 , mark_0(2) -> 3
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(8) -> 3
                 , 0_0() -> 5
                 , ok_0(2) -> 8
                 , ok_0(3) -> 8
                 , ok_0(5) -> 8
                 , ok_0(8) -> 8
                 , active^#_0(2) -> 10
                 , active^#_0(3) -> 10
                 , active^#_0(5) -> 10
                 , active^#_0(8) -> 10
                 , cons^#_0(2, 2) -> 12
                 , cons^#_0(2, 3) -> 12
                 , cons^#_0(2, 5) -> 12
                 , cons^#_0(2, 8) -> 12
                 , cons^#_0(3, 2) -> 12
                 , cons^#_0(3, 3) -> 12
                 , cons^#_0(3, 5) -> 12
                 , cons^#_0(3, 8) -> 12
                 , cons^#_0(5, 2) -> 12
                 , cons^#_0(5, 3) -> 12
                 , cons^#_0(5, 5) -> 12
                 , cons^#_0(5, 8) -> 12
                 , cons^#_0(8, 2) -> 12
                 , cons^#_0(8, 3) -> 12
                 , cons^#_0(8, 5) -> 12
                 , cons^#_0(8, 8) -> 12
                 , c_4_0(12) -> 12
                 , c_10_0(12) -> 12}
      
   3) {  active^#(tail(X)) -> c_3(tail^#(active(X)))
       , tail^#(ok(X)) -> c_11(tail^#(X))
       , tail^#(mark(X)) -> c_5(tail^#(X))}
      
      The usable rules for this path are the following:
      {  active(zeros()) -> mark(cons(0(), zeros()))
       , active(tail(cons(X, XS))) -> mark(XS)
       , active(cons(X1, X2)) -> cons(active(X1), X2)
       , active(tail(X)) -> tail(active(X))
       , cons(mark(X1), X2) -> mark(cons(X1, X2))
       , tail(mark(X)) -> mark(tail(X))
       , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
       , tail(ok(X)) -> ok(tail(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(zeros()) -> mark(cons(0(), zeros()))
               , active(tail(cons(X, XS))) -> mark(XS)
               , active(cons(X1, X2)) -> cons(active(X1), X2)
               , active(tail(X)) -> tail(active(X))
               , cons(mark(X1), X2) -> mark(cons(X1, X2))
               , tail(mark(X)) -> mark(tail(X))
               , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail(ok(X)) -> ok(tail(X))
               , active^#(tail(X)) -> c_3(tail^#(active(X)))
               , tail^#(ok(X)) -> c_11(tail^#(X))
               , tail^#(mark(X)) -> c_5(tail^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {tail^#(mark(X)) -> c_5(tail^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {tail^#(mark(X)) -> c_5(tail^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  tail^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , tail^#(ok(X)) -> c_11(tail^#(X))}
            and weakly orienting the rules
            {tail^#(mark(X)) -> c_5(tail^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail^#(ok(X)) -> c_11(tail^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [6]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  tail^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(tail(X)) -> c_3(tail^#(active(X)))}
            and weakly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , tail^#(ok(X)) -> c_11(tail^#(X))
             , tail^#(mark(X)) -> c_5(tail^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(tail(X)) -> c_3(tail^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [2]
                  tail^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(tail(cons(X, XS))) -> mark(XS)}
            and weakly orienting the rules
            {  active^#(tail(X)) -> c_3(tail^#(active(X)))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , tail^#(ok(X)) -> c_11(tail^#(X))
             , tail^#(mark(X)) -> c_5(tail^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(tail(cons(X, XS))) -> mark(XS)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [4]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  tail^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(zeros()) -> mark(cons(0(), zeros()))}
            and weakly orienting the rules
            {  active(tail(cons(X, XS))) -> mark(XS)
             , active^#(tail(X)) -> c_3(tail^#(active(X)))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , tail^#(ok(X)) -> c_11(tail^#(X))
             , tail^#(mark(X)) -> c_5(tail^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(zeros()) -> mark(cons(0(), zeros()))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  tail^#(x1) = [1] x1 + [6]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(cons(X1, X2)) -> cons(active(X1), X2)
                 , active(tail(X)) -> tail(active(X))
                 , cons(mark(X1), X2) -> mark(cons(X1, X2))
                 , tail(mark(X)) -> mark(tail(X))
                 , tail(ok(X)) -> ok(tail(X))}
              Weak Rules:
                {  active(zeros()) -> mark(cons(0(), zeros()))
                 , active(tail(cons(X, XS))) -> mark(XS)
                 , active^#(tail(X)) -> c_3(tail^#(active(X)))
                 , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                 , tail^#(ok(X)) -> c_11(tail^#(X))
                 , tail^#(mark(X)) -> c_5(tail^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(cons(X1, X2)) -> cons(active(X1), X2)
                   , active(tail(X)) -> tail(active(X))
                   , cons(mark(X1), X2) -> mark(cons(X1, X2))
                   , tail(mark(X)) -> mark(tail(X))
                   , tail(ok(X)) -> ok(tail(X))}
                Weak Rules:
                  {  active(zeros()) -> mark(cons(0(), zeros()))
                   , active(tail(cons(X, XS))) -> mark(XS)
                   , active^#(tail(X)) -> c_3(tail^#(active(X)))
                   , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                   , tail^#(ok(X)) -> c_11(tail^#(X))
                   , tail^#(mark(X)) -> c_5(tail^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  zeros_0() -> 2
                 , mark_0(2) -> 3
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(8) -> 3
                 , 0_0() -> 5
                 , ok_0(2) -> 8
                 , ok_0(3) -> 8
                 , ok_0(5) -> 8
                 , ok_0(8) -> 8
                 , active^#_0(2) -> 10
                 , active^#_0(3) -> 10
                 , active^#_0(5) -> 10
                 , active^#_0(8) -> 10
                 , tail^#_0(2) -> 16
                 , tail^#_0(3) -> 16
                 , tail^#_0(5) -> 16
                 , tail^#_0(8) -> 16
                 , c_5_0(16) -> 16
                 , c_11_0(16) -> 16}
      
   4) {  proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))
       , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))
       , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  proper(zeros()) -> ok(zeros())
       , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(tail(X)) -> tail(proper(X))
       , cons(mark(X1), X2) -> mark(cons(X1, X2))
       , tail(mark(X)) -> mark(tail(X))
       , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
       , tail(ok(X)) -> ok(tail(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(zeros()) -> ok(zeros())
               , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(tail(X)) -> tail(proper(X))
               , cons(mark(X1), X2) -> mark(cons(X1, X2))
               , tail(mark(X)) -> mark(tail(X))
               , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail(ok(X)) -> ok(tail(X))
               , proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))
               , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))
               , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_6() = [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
            and weakly orienting the rules
            {  proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [8]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_6() = [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [2]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(zeros()) -> ok(zeros())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))
             , proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(zeros()) -> ok(zeros())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [7]
                  c_6() = [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
                 , proper(tail(X)) -> tail(proper(X))
                 , cons(mark(X1), X2) -> mark(cons(X1, X2))
                 , tail(mark(X)) -> mark(tail(X))
                 , tail(ok(X)) -> ok(tail(X))}
              Weak Rules:
                {  proper(zeros()) -> ok(zeros())
                 , proper(0()) -> ok(0())
                 , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))
                 , proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))
                 , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                 , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
                   , proper(tail(X)) -> tail(proper(X))
                   , cons(mark(X1), X2) -> mark(cons(X1, X2))
                   , tail(mark(X)) -> mark(tail(X))
                   , tail(ok(X)) -> ok(tail(X))}
                Weak Rules:
                  {  proper(zeros()) -> ok(zeros())
                   , proper(0()) -> ok(0())
                   , cons^#(mark(X1), X2) -> c_4(cons^#(X1, X2))
                   , proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))
                   , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                   , cons^#(ok(X1), ok(X2)) -> c_10(cons^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  zeros_0() -> 2
                 , mark_0(2) -> 3
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(8) -> 3
                 , 0_0() -> 5
                 , ok_0(2) -> 8
                 , ok_0(3) -> 8
                 , ok_0(5) -> 8
                 , ok_0(8) -> 8
                 , cons^#_0(2, 2) -> 12
                 , cons^#_0(2, 3) -> 12
                 , cons^#_0(2, 5) -> 12
                 , cons^#_0(2, 8) -> 12
                 , cons^#_0(3, 2) -> 12
                 , cons^#_0(3, 3) -> 12
                 , cons^#_0(3, 5) -> 12
                 , cons^#_0(3, 8) -> 12
                 , cons^#_0(5, 2) -> 12
                 , cons^#_0(5, 3) -> 12
                 , cons^#_0(5, 5) -> 12
                 , cons^#_0(5, 8) -> 12
                 , cons^#_0(8, 2) -> 12
                 , cons^#_0(8, 3) -> 12
                 , cons^#_0(8, 5) -> 12
                 , cons^#_0(8, 8) -> 12
                 , c_4_0(12) -> 12
                 , proper^#_0(2) -> 19
                 , proper^#_0(3) -> 19
                 , proper^#_0(5) -> 19
                 , proper^#_0(8) -> 19
                 , c_10_0(12) -> 12}
      
   5) {  proper^#(tail(X)) -> c_9(tail^#(proper(X)))
       , tail^#(ok(X)) -> c_11(tail^#(X))
       , tail^#(mark(X)) -> c_5(tail^#(X))}
      
      The usable rules for this path are the following:
      {  proper(zeros()) -> ok(zeros())
       , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(tail(X)) -> tail(proper(X))
       , cons(mark(X1), X2) -> mark(cons(X1, X2))
       , tail(mark(X)) -> mark(tail(X))
       , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
       , tail(ok(X)) -> ok(tail(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(zeros()) -> ok(zeros())
               , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(tail(X)) -> tail(proper(X))
               , cons(mark(X1), X2) -> mark(cons(X1, X2))
               , tail(mark(X)) -> mark(tail(X))
               , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail(ok(X)) -> ok(tail(X))
               , proper^#(tail(X)) -> c_9(tail^#(proper(X)))
               , tail^#(ok(X)) -> c_11(tail^#(X))
               , tail^#(mark(X)) -> c_5(tail^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , tail^#(ok(X)) -> c_11(tail^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail^#(ok(X)) -> c_11(tail^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [2]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [1] x1 + [7]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [4]
                  proper^#(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(tail(X)) -> c_9(tail^#(proper(X)))}
            and weakly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , tail^#(ok(X)) -> c_11(tail^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(tail(X)) -> c_9(tail^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [8]
                  proper^#(x1) = [1] x1 + [3]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {tail^#(mark(X)) -> c_5(tail^#(X))}
            and weakly orienting the rules
            {  proper^#(tail(X)) -> c_9(tail^#(proper(X)))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , tail^#(ok(X)) -> c_11(tail^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {tail^#(mark(X)) -> c_5(tail^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [4]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [1] x1 + [12]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(zeros()) -> ok(zeros())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  tail^#(mark(X)) -> c_5(tail^#(X))
             , proper^#(tail(X)) -> c_9(tail^#(proper(X)))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , tail^#(ok(X)) -> c_11(tail^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(zeros()) -> ok(zeros())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [15]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [5]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
                 , proper(tail(X)) -> tail(proper(X))
                 , cons(mark(X1), X2) -> mark(cons(X1, X2))
                 , tail(mark(X)) -> mark(tail(X))
                 , tail(ok(X)) -> ok(tail(X))}
              Weak Rules:
                {  proper(zeros()) -> ok(zeros())
                 , proper(0()) -> ok(0())
                 , tail^#(mark(X)) -> c_5(tail^#(X))
                 , proper^#(tail(X)) -> c_9(tail^#(proper(X)))
                 , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                 , tail^#(ok(X)) -> c_11(tail^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
                   , proper(tail(X)) -> tail(proper(X))
                   , cons(mark(X1), X2) -> mark(cons(X1, X2))
                   , tail(mark(X)) -> mark(tail(X))
                   , tail(ok(X)) -> ok(tail(X))}
                Weak Rules:
                  {  proper(zeros()) -> ok(zeros())
                   , proper(0()) -> ok(0())
                   , tail^#(mark(X)) -> c_5(tail^#(X))
                   , proper^#(tail(X)) -> c_9(tail^#(proper(X)))
                   , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                   , tail^#(ok(X)) -> c_11(tail^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  zeros_0() -> 2
                 , mark_0(2) -> 3
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(8) -> 3
                 , 0_0() -> 5
                 , ok_0(2) -> 8
                 , ok_0(3) -> 8
                 , ok_0(5) -> 8
                 , ok_0(8) -> 8
                 , tail^#_0(2) -> 16
                 , tail^#_0(3) -> 16
                 , tail^#_0(5) -> 16
                 , tail^#_0(8) -> 16
                 , c_5_0(16) -> 16
                 , proper^#_0(2) -> 19
                 , proper^#_0(3) -> 19
                 , proper^#_0(5) -> 19
                 , proper^#_0(8) -> 19
                 , c_11_0(16) -> 16}
      
   6) {active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))}
      
      The usable rules for this path are the following:
      {  active(zeros()) -> mark(cons(0(), zeros()))
       , active(tail(cons(X, XS))) -> mark(XS)
       , active(cons(X1, X2)) -> cons(active(X1), X2)
       , active(tail(X)) -> tail(active(X))
       , cons(mark(X1), X2) -> mark(cons(X1, X2))
       , tail(mark(X)) -> mark(tail(X))
       , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
       , tail(ok(X)) -> ok(tail(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(zeros()) -> mark(cons(0(), zeros()))
               , active(tail(cons(X, XS))) -> mark(XS)
               , active(cons(X1, X2)) -> cons(active(X1), X2)
               , active(tail(X)) -> tail(active(X))
               , cons(mark(X1), X2) -> mark(cons(X1, X2))
               , tail(mark(X)) -> mark(tail(X))
               , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail(ok(X)) -> ok(tail(X))
               , active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [15]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))}
            and weakly orienting the rules
            {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(tail(cons(X, XS))) -> mark(XS)}
            and weakly orienting the rules
            {  active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(tail(cons(X, XS))) -> mark(XS)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [8]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(zeros()) -> mark(cons(0(), zeros()))}
            and weakly orienting the rules
            {  active(tail(cons(X, XS))) -> mark(XS)
             , active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(zeros()) -> mark(cons(0(), zeros()))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(cons(X1, X2)) -> cons(active(X1), X2)
                 , active(tail(X)) -> tail(active(X))
                 , cons(mark(X1), X2) -> mark(cons(X1, X2))
                 , tail(mark(X)) -> mark(tail(X))
                 , tail(ok(X)) -> ok(tail(X))}
              Weak Rules:
                {  active(zeros()) -> mark(cons(0(), zeros()))
                 , active(tail(cons(X, XS))) -> mark(XS)
                 , active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
                 , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(cons(X1, X2)) -> cons(active(X1), X2)
                   , active(tail(X)) -> tail(active(X))
                   , cons(mark(X1), X2) -> mark(cons(X1, X2))
                   , tail(mark(X)) -> mark(tail(X))
                   , tail(ok(X)) -> ok(tail(X))}
                Weak Rules:
                  {  active(zeros()) -> mark(cons(0(), zeros()))
                   , active(tail(cons(X, XS))) -> mark(XS)
                   , active^#(cons(X1, X2)) -> c_2(cons^#(active(X1), X2))
                   , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  zeros_0() -> 2
                 , mark_0(2) -> 3
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(8) -> 3
                 , 0_0() -> 5
                 , ok_0(2) -> 8
                 , ok_0(3) -> 8
                 , ok_0(5) -> 8
                 , ok_0(8) -> 8
                 , active^#_0(2) -> 10
                 , active^#_0(3) -> 10
                 , active^#_0(5) -> 10
                 , active^#_0(8) -> 10
                 , cons^#_0(2, 2) -> 12
                 , cons^#_0(2, 3) -> 12
                 , cons^#_0(2, 5) -> 12
                 , cons^#_0(2, 8) -> 12
                 , cons^#_0(3, 2) -> 12
                 , cons^#_0(3, 3) -> 12
                 , cons^#_0(3, 5) -> 12
                 , cons^#_0(3, 8) -> 12
                 , cons^#_0(5, 2) -> 12
                 , cons^#_0(5, 3) -> 12
                 , cons^#_0(5, 5) -> 12
                 , cons^#_0(5, 8) -> 12
                 , cons^#_0(8, 2) -> 12
                 , cons^#_0(8, 3) -> 12
                 , cons^#_0(8, 5) -> 12
                 , cons^#_0(8, 8) -> 12}
      
   7) {active^#(tail(X)) -> c_3(tail^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(zeros()) -> mark(cons(0(), zeros()))
       , active(tail(cons(X, XS))) -> mark(XS)
       , active(cons(X1, X2)) -> cons(active(X1), X2)
       , active(tail(X)) -> tail(active(X))
       , cons(mark(X1), X2) -> mark(cons(X1, X2))
       , tail(mark(X)) -> mark(tail(X))
       , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
       , tail(ok(X)) -> ok(tail(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(zeros()) -> mark(cons(0(), zeros()))
               , active(tail(cons(X, XS))) -> mark(XS)
               , active(cons(X1, X2)) -> cons(active(X1), X2)
               , active(tail(X)) -> tail(active(X))
               , cons(mark(X1), X2) -> mark(cons(X1, X2))
               , tail(mark(X)) -> mark(tail(X))
               , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail(ok(X)) -> ok(tail(X))
               , active^#(tail(X)) -> c_3(tail^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(tail(cons(X, XS))) -> mark(XS)
             , active^#(tail(X)) -> c_3(tail^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(tail(cons(X, XS))) -> mark(XS)
               , active^#(tail(X)) -> c_3(tail^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [4]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  tail^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            and weakly orienting the rules
            {  active(tail(cons(X, XS))) -> mark(XS)
             , active^#(tail(X)) -> c_3(tail^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  tail^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(zeros()) -> mark(cons(0(), zeros()))}
            and weakly orienting the rules
            {  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
             , active(tail(cons(X, XS))) -> mark(XS)
             , active^#(tail(X)) -> c_3(tail^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(zeros()) -> mark(cons(0(), zeros()))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  tail^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(cons(X1, X2)) -> cons(active(X1), X2)
                 , active(tail(X)) -> tail(active(X))
                 , cons(mark(X1), X2) -> mark(cons(X1, X2))
                 , tail(mark(X)) -> mark(tail(X))
                 , tail(ok(X)) -> ok(tail(X))}
              Weak Rules:
                {  active(zeros()) -> mark(cons(0(), zeros()))
                 , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                 , active(tail(cons(X, XS))) -> mark(XS)
                 , active^#(tail(X)) -> c_3(tail^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(cons(X1, X2)) -> cons(active(X1), X2)
                   , active(tail(X)) -> tail(active(X))
                   , cons(mark(X1), X2) -> mark(cons(X1, X2))
                   , tail(mark(X)) -> mark(tail(X))
                   , tail(ok(X)) -> ok(tail(X))}
                Weak Rules:
                  {  active(zeros()) -> mark(cons(0(), zeros()))
                   , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
                   , active(tail(cons(X, XS))) -> mark(XS)
                   , active^#(tail(X)) -> c_3(tail^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  zeros_0() -> 2
                 , mark_0(2) -> 3
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(8) -> 3
                 , 0_0() -> 5
                 , ok_0(2) -> 8
                 , ok_0(3) -> 8
                 , ok_0(5) -> 8
                 , ok_0(8) -> 8
                 , active^#_0(2) -> 10
                 , active^#_0(3) -> 10
                 , active^#_0(5) -> 10
                 , active^#_0(8) -> 10
                 , tail^#_0(2) -> 16
                 , tail^#_0(3) -> 16
                 , tail^#_0(5) -> 16
                 , tail^#_0(8) -> 16}
      
   8) {proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))}
      
      The usable rules for this path are the following:
      {  proper(zeros()) -> ok(zeros())
       , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(tail(X)) -> tail(proper(X))
       , cons(mark(X1), X2) -> mark(cons(X1, X2))
       , tail(mark(X)) -> mark(tail(X))
       , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
       , tail(ok(X)) -> ok(tail(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(zeros()) -> ok(zeros())
               , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(tail(X)) -> tail(proper(X))
               , cons(mark(X1), X2) -> mark(cons(X1, X2))
               , tail(mark(X)) -> mark(tail(X))
               , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail(ok(X)) -> ok(tail(X))
               , proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [4]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [15]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7(x1) = [1] x1 + [15]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [4]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_6() = [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(zeros()) -> ok(zeros())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(zeros()) -> ok(zeros())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [1]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [2]
                  c_6() = [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
                 , proper(tail(X)) -> tail(proper(X))
                 , cons(mark(X1), X2) -> mark(cons(X1, X2))
                 , tail(mark(X)) -> mark(tail(X))
                 , tail(ok(X)) -> ok(tail(X))}
              Weak Rules:
                {  proper(zeros()) -> ok(zeros())
                 , proper(0()) -> ok(0())
                 , proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))
                 , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
                   , proper(tail(X)) -> tail(proper(X))
                   , cons(mark(X1), X2) -> mark(cons(X1, X2))
                   , tail(mark(X)) -> mark(tail(X))
                   , tail(ok(X)) -> ok(tail(X))}
                Weak Rules:
                  {  proper(zeros()) -> ok(zeros())
                   , proper(0()) -> ok(0())
                   , proper^#(cons(X1, X2)) -> c_7(cons^#(proper(X1), proper(X2)))
                   , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  zeros_0() -> 2
                 , mark_0(2) -> 3
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(8) -> 3
                 , 0_0() -> 5
                 , ok_0(2) -> 8
                 , ok_0(3) -> 8
                 , ok_0(5) -> 8
                 , ok_0(8) -> 8
                 , cons^#_0(2, 2) -> 12
                 , cons^#_0(2, 3) -> 12
                 , cons^#_0(2, 5) -> 12
                 , cons^#_0(2, 8) -> 12
                 , cons^#_0(3, 2) -> 12
                 , cons^#_0(3, 3) -> 12
                 , cons^#_0(3, 5) -> 12
                 , cons^#_0(3, 8) -> 12
                 , cons^#_0(5, 2) -> 12
                 , cons^#_0(5, 3) -> 12
                 , cons^#_0(5, 5) -> 12
                 , cons^#_0(5, 8) -> 12
                 , cons^#_0(8, 2) -> 12
                 , cons^#_0(8, 3) -> 12
                 , cons^#_0(8, 5) -> 12
                 , cons^#_0(8, 8) -> 12
                 , proper^#_0(2) -> 19
                 , proper^#_0(3) -> 19
                 , proper^#_0(5) -> 19
                 , proper^#_0(8) -> 19}
      
   9) {proper^#(tail(X)) -> c_9(tail^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(zeros()) -> ok(zeros())
       , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(tail(X)) -> tail(proper(X))
       , cons(mark(X1), X2) -> mark(cons(X1, X2))
       , tail(mark(X)) -> mark(tail(X))
       , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
       , tail(ok(X)) -> ok(tail(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(zeros()) -> ok(zeros())
               , proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(tail(X)) -> tail(proper(X))
               , cons(mark(X1), X2) -> mark(cons(X1, X2))
               , tail(mark(X)) -> mark(tail(X))
               , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
               , tail(ok(X)) -> ok(tail(X))
               , proper^#(tail(X)) -> c_9(tail^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(tail(X)) -> c_9(tail^#(proper(X)))}
            and weakly orienting the rules
            {cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(tail(X)) -> c_9(tail^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(zeros()) -> ok(zeros())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  proper^#(tail(X)) -> c_9(tail^#(proper(X)))
             , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(zeros()) -> ok(zeros())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [4]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
                 , proper(tail(X)) -> tail(proper(X))
                 , cons(mark(X1), X2) -> mark(cons(X1, X2))
                 , tail(mark(X)) -> mark(tail(X))
                 , tail(ok(X)) -> ok(tail(X))}
              Weak Rules:
                {  proper(zeros()) -> ok(zeros())
                 , proper(0()) -> ok(0())
                 , proper^#(tail(X)) -> c_9(tail^#(proper(X)))
                 , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
                   , proper(tail(X)) -> tail(proper(X))
                   , cons(mark(X1), X2) -> mark(cons(X1, X2))
                   , tail(mark(X)) -> mark(tail(X))
                   , tail(ok(X)) -> ok(tail(X))}
                Weak Rules:
                  {  proper(zeros()) -> ok(zeros())
                   , proper(0()) -> ok(0())
                   , proper^#(tail(X)) -> c_9(tail^#(proper(X)))
                   , cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  zeros_0() -> 2
                 , mark_0(2) -> 3
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(8) -> 3
                 , 0_0() -> 5
                 , ok_0(2) -> 8
                 , ok_0(3) -> 8
                 , ok_0(5) -> 8
                 , ok_0(8) -> 8
                 , tail^#_0(2) -> 16
                 , tail^#_0(3) -> 16
                 , tail^#_0(5) -> 16
                 , tail^#_0(8) -> 16
                 , proper^#_0(2) -> 19
                 , proper^#_0(3) -> 19
                 , proper^#_0(5) -> 19
                 , proper^#_0(8) -> 19}
      
   10)
      {active^#(zeros()) -> c_0(cons^#(0(), zeros()))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           zeros() = [0]
           mark(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           tail(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           tail^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_6() = [0]
           c_7(x1) = [0] x1 + [0]
           c_8() = [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(zeros()) -> c_0(cons^#(0(), zeros()))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(zeros()) -> c_0(cons^#(0(), zeros()))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(zeros()) -> c_0(cons^#(0(), zeros()))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [0] x1 + [0]
                  cons(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  tail(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  cons^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(zeros()) -> c_0(cons^#(0(), zeros()))}
            
            Details:         
              The given problem does not contain any strict rules
      
   11)
      {active^#(tail(cons(X, XS))) -> c_1()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           zeros() = [0]
           mark(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           tail(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           tail^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_6() = [0]
           c_7(x1) = [0] x1 + [0]
           c_8() = [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(tail(cons(X, XS))) -> c_1()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(tail(cons(X, XS))) -> c_1()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(tail(cons(X, XS))) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [0] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  tail(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(tail(cons(X, XS))) -> c_1()}
            
            Details:         
              The given problem does not contain any strict rules
      
   12)
      {proper^#(zeros()) -> c_6()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           zeros() = [0]
           mark(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           tail(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           tail^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_6() = [0]
           c_7(x1) = [0] x1 + [0]
           c_8() = [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(zeros()) -> c_6()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(zeros()) -> c_6()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(zeros()) -> c_6()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [0] x1 + [0]
                  cons(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  tail(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(zeros()) -> c_6()}
            
            Details:         
              The given problem does not contain any strict rules
      
   13)
      {proper^#(0()) -> c_8()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           zeros() = [0]
           mark(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           tail(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           tail^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_6() = [0]
           c_7(x1) = [0] x1 + [0]
           c_8() = [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(0()) -> c_8()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(0()) -> c_8()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(0()) -> c_8()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  zeros() = [0]
                  mark(x1) = [0] x1 + [0]
                  cons(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  tail(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  cons^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  tail^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8() = [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(0()) -> c_8()}
            
            Details:         
              The given problem does not contain any strict rules